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Abstract

Bootstrapping has enormous potential in statistics education and practice, but there are subtle is-
sues and ways to go wrong. For example, the common combination of nonparametric bootstrap-
ping and bootstrap percentile confidence intervals is less accurate than-ugiexyals for small
samples, though more accurate for larger samples. My goals in this article are to provide a deeper
understanding of bootstrap methods—how they work, when they work or not, and which methods

work better—and to highlight pedagogical issues.

Keyworps: Teaching, bootstrap, sampling distribution, statistical concepts, standard error, bias,

confidence intervals
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1 Introduction

Resampling methods, including permutation tests and the bootstrap, have enormous potential in
statistics education and practice. They are beginning to make inroads in edu€aitam(2007)

was influential in arguing for the pedagogical value of permutation tests in particular. Undergrad-
uate textbooks that consistently use resampling as tools in their own right and to motivate classical
methods are beginning to appear, includirugk et al.(2013 for Introductory Statistics an@hi-

hara and Hesterberg@11) for Mathematical Statistics. Other texiBr(tle et al, 2014 Diez et al,

2014 use permutation or other randomization texts, though minimal bootstrapping. Experimental
evidence suggests that students learn better using these methaldsdt al, 2014).

The primary focus of this article is the bootstrap, where there are a variety of competing meth-
ods and issues that are subtler and less well-known than for permutation tests. | hope to provide
a better understanding of the key ideas behind the bootstrap, and the meriftereindimethods.
Without this understanding, things can go wrong. For example, people may prefer the bootstrap for
small samples, to avoid relying on the central limit theorem. However, the common bootstrap per-
centile confidence interval is poor for small samples; it is likargerval computed usinginstead
of t quantiles and estimatingwith a divisor ofn instead oin — 1. Conversely, it is more accurate
thant-intervals for larger samples. Some other bootstrap intervals have the same small-sample
issues.

The bootstrap is used for estimating standard errors and bias, obtaining confidence intervals,
and sometimes for tests. The focus here is on relatively simple bootstrap methods and their ped-
agogical application, particularly for Stat 101 (introductory statistics with an emphasis on data
analysis) and Mathematical Statistics (a first course in statistical theory, using math and simula-
tion), though the methods are useful elsewhere in the curriculum. For more background on the
bootstrap and a broader array of applications, E&®( and Tibshiranil993 Davison and Hink-
ley, 1997). Hesterberg2014) is a longer version of this articleHesterberg et ak2005 is an
introduction to the bootstrap and permutation tests for Stat 101 students.

Sectionl introduces the bootstrap for estimators astatistics, and discusses its pedagogical
and practical value. Sectighdevelops the idea behind the bootstrap, and implications thereof.

Section3 visually explores when the bootstrap works or not, and comparesflibets of two
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sources of variation—the original sample, and bootstrap sampling. Setsanveys selected
confidence intervals and their pedagogical and practical merits. Séotiovers pedagogical and
practical issues in regression. Sectbcontains a summary and discussion.

Examples and figures are createdRi(R Core Team2014), using theesamplgrackagefles-

terberg,2015. Scripts are in an online supplement.

1.1 Verizon Example

The following example is used throughout this article. Verizon wakhanmbent Local Exchange
Carrier (ILEC), responsible for maintaining land-line phone service in certain areas. Verizon also
sold long-distance service, as did a number of competitors, te@oeatpetitive Local Exchange
Carriers (CLEC). When something went wrong, Verizon was responsible for repairs, and was
supposed to make repairs as quickly for CLEC long-distance customers as for their own. The New
York Public Utilities Commission (PUC) monitored fairness by comparing repair times for Verizon
and diterent CLECs, for dferent classes of repairs and time periods. In each case a hypothesis test
was performed at the 1% significance level, to determine whether repairs for a CLEC’s customers
were significantly slower than for Verizon’s customers. There were hundreds of such tests. If
substantially more than 1% of the tests were significant, then Verizon would pay large penalties.

These tests were performed usirtgsts; Verizon proposed using permutation tests instead.

n mean sd
ILEC 1664 8.41 16.5
CLEC 23 16.69 195

Table 1: Verizon repair times.

The data for one combination of CLEC, class of service, and period are shown inlTaite
Figurel. Both samples are positively skewed. The mean CLEC repair time is nearly double that
for ILEC, suggesting discrimination, though thétfdrence could be just chance.

The one-sided permutation te3tvalue is 00171, well above the 1% cutomandated by the
PUC. In comparison, the poolédestP-value is 00045, about four times too small. The permu-
tation test gives the correct answer, with nearly exact Type 1 error rates; this was recognized as

far back asfisher 1936, who used-tests as an approximation because perturbation tests were
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computationally infeasible then. Thdest is inaccurate because it is sensitive to skewness when
the sample sizes fier. Usingt tests for 10000 Verizon fairness tests would result in about 400
false positive results instead of the expected 100, resulting in large monetary penalties. Similarly,
t confidence intervals are inaccurate. We'll see how inaccurate, and explore alternatives, using the

bootstrap.

1.2 One-Sample Bootstrap

Letd be a statistic calculated from a sampladfi.d. observations (time series and other dependent
data are beyond the scope of this article). In the ordimanmyparametric bootstrapve drawn
observations with replacement from the original data to credieaastrap sampl®r resample
and calculate the statistit: for this sample (we use to denote a bootstrap quantity). We repeat
that many times, say = 10000 (we use 10000 unless noted otherwise). The bootstrap statistics
comprise théootstrap distribution Figure2 shows bootstrap distributions 6f= X for the ILEC
and CLEC datasets. We use each distribution to estimate certain things about the corresponding
sampling distribution, including:
standard error: the bootstrap standard errors the sample standard deviation of the bootstrap
distribution,s, = \/1/(r ~ 1) >0 - 2.
confidence intervals: a quick-and-dirty interval, thbootstrap percentile intervals the range of
the middle 95% of the bootstrap distribution,

bias: the bootstrap bias estimaeh* — 6.

Summary statistics of the bootstrap distributions are:

Observed SE Mean Bias
CLEC 16.50913 3.961816 16.53088 0.0217463
ILEC 8.41161 0.357599 8.40411 -0.0075032

The CLEC SE is larger primarily due to the smaller sample size and secondly to the larger sample
sd in the original data. Bootstrap percentile intervals aré3(8.13) for ILEC and (101, 25.4) for

CLEC. For comparisons/ y/n = 0.36 for ILEC and 407 for CLEC, and standardintervals are
(7.71,9.12) and (81, 24.9). The distribution appears approximately normal for the ILEC sample
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but not for the smaller CLEC sample, suggesting thatervals might be reasonable for the ILEC
mean but not the CLEC mean.

The bootstrap separates the concept of a standard error—the standard deviation of a sampling
distribution—from the common formuls/ 4/n for estimating the SE of a sample mean. This sep-
aration should help students understand the concept. Based on extensive experience interviewing
job candidates, | attest that a better way to teach about SEs is needed—too many do not understand

SEs, and even confuse SEs in other contexts with the formula for the SE of a sample mean.

1.3 Two-Sample Bootstrap

For a two-sample bootstrap, we independently draw bootstrap samples with replacement from each
sample, and compute a statistic that compares the samples. For the Verizon data, we draw a sample
of size 1664 from the ILEC data and 23 from the CLEC data, and computeftbeedice in means
X1 — X. The bootstrap distribution (see online supplement) is centered at the observed statistic;
it is used for confidence intervals and standard errors. It is skewed like the CLEC distribution;
t intervals would not be appropriate.

For comparison, the permutation test pools the data and splits the pooled data into two groups
using sampling without replacement, before taking tBedence in means. The sampling is con-
sistent with the null hypothesis of noftérence between groups, and the distribution is centered at

Zero.

1.4 Bootstrapt Distribution

It is not surprising that procedures are inaccurate for skewed data with a sample of size 23, or for
the diference when one sample is that small. More surprising is howt badfidence intervals
are for the larger sample, size 1664. To see this, we bootsstagistics.

Above we resamplednivariate distributions ofestimatorslike x or x; — x,. Here we look
at joint distributions, for example the joint distribution ¥fands, and distributions of statistics
that depend on botfiandé. To estimate the sampling distribution ® 6, we use the bootstrap

distribution of¢* — . The bootstrap bias estimatefi&)* — 6), an estimate oE(d — 6). To estimate
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the sampling distribution of astatistic
6-6

= — 1
where SE is a standard error calculated from the original sample, we use the bootstrap distribution
of
6 -6
t = . 2
SE 2

Figure3 shows the joint distribution oX* ands'/ 4/n, and the distribution of*, for the ILEC
data withn = 1664. Standard theory says that for normal populatidaads are independent, and
thet statistict = (X — u)/(s/ yn) has at distribution. However, for positively skewed populations
X andsare positively correlated, the correlation doesn’t get smaller with larged the statistic
does not have adistribution. WhileX* is positively skewed with mean, tis twice as skewed in
the opposite direction because the denominatafn is more dected by large observations than
the numeratoK is. Andt has a negative median, so its quantiles end up 3x as asymmetrical to the
left.

The amount of skewness apparent in the bootdtdigtribution matters. The bootstrap distri-
bution is a sampling distribution, not raw data; the Central Limit Theorem has already had its one
chance to work. At this point, any deviations indicate errors in procedures that assume normal or
t sampling distributions. 3.6% of the bootstrap distribution is beldyy,,1, and 1.7% is above
t,/2n-1 (based om = 10° samplesg = 0.05). Even withn = 1664, thet statistic isn’t even close
to having at distribution, based on what matters—tail probabilities.

In my experience giving talks and courses, typically over half of the audience indicates there is
no problem with the skewness apparent in plots like Figuréhey are used to looking at normal
guantile plots of data, not of sampling distributions. A common flaw in statistical practice is to fail
to judge how accurate standard CLT-based methods are for specific data; the bodistragution

provides an fective way to do so.

1.5 Pedagogical and Practical Value

The bootstrap process reinforces the central role that sampling from a population plays in statis-

tics. Sampling variability is visible, and it is natural to measure the variability of the bootstrap
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distribution using methods students learned for summarizing data, such as the standard deviation.
Students can see if the bootstrap distribution is bell-shaped. It is natural to use the middle 95% of
the distribution as a 95% confidence interval.

The bootstrap makes the abstract concrete—abstract concepts like sampling distributions, stan-
dard errors, bias, central limit theorem, and confidence intervals are visible in plots of the bootstrap
distribution.

The bootstrap works the same way with a wide variety of statistics. This makes it easy for
students to work with a variety of statistics, and focus on ideas rather than formulas. This also
lets us do better statistics, because we can work with statistics that are appropriate rather than just
those that are easy—e.g. a median or trimmed mean instead of a mean.

Students can obtain confidence intervals by working directly with the statistic of interest, rather
than using 4d statistic. You could skip talking abotistatistics and intervals, or defer that until
later. At that point you may introduce another quick-and-dirty confidence interval,ititerval
with bootstrap standard errop + t./2S. IN Mathematical Statistics, students can use the bootstrap
to help understand joint distributions of estimators ands, and to understand the distribution
of t statistics, and computmotstrap t confidence intervalsee Sectiod.3.

The bootstrap can also reinforce the understanding of formula methods, and provide a way for
students to check their work. Students may know the forrspkgn without understanding what
it really is; but they can compare it t§ or to an eyeball estimate of standard deviation from a
histogram of the bootstrap distribution, and see that it measures how the sample mean varies due
to random sampling.

Resampling is also important in practice. It often provides the only practical way to do
inference—when it is too dlicult to derive formulas, or the data are stored in a way that make
calculating the formulas impractical; a longer version of this artidiesterberg2014) contains ex-
amples from Google, from my work and others. In other cases resampling provides better accuracy
than formula methods. For one simple example, consider confidence intervals for the variance of
the CLEC populations’ = 3804, the bootstrap SE fa is 267, and the 95% percentile interval is
(59,932). The classical normal-based interval is{1)S° /x5, 475 (N—1)S*/x5,0,029) = (228 762).

It assumes thanh(- 1)’/ ~ y?(n— 1), but for long-tailed distributions the actual variancesois
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far greater than for normal distributions. | recommend not teachingigervals for a variance,
or F-based intervals for the ratio of variances, because they are not useful in practice, with no

robustness against non-normality. Their coverage does not improvesas.

2 The ldea Behind Bootstrapping

Inferential statistics is based on sampling distributions. In theory, to get these we:

e draw (all or infinitely many) samples from tip@pulation and

e compute the statistic of interest for each sample (such as the mean, median, etc.).
The distribution of the statistics is tampling distributionsee Figurel.

However, in practice we cannot draw arbitrarily many samples from the population; we have
only one sample. The bootstrap idea is to draw samples from an estimate of the population, in lieu
of the population:

e draw samples froman estimate ofhe population, and

e compute the statistic of interest for each sample.

The distribution of the statistics is th®otstrap distributionsee Figuré.

2.1 Plug-in Principle

The bootstrap is based on thkig-in principle—if something is unknown, we substitute an esti-
mate for it. This principle is very familiar to statisticians. For example, the sd of the sample mean
is o/ 4/n; whenco is unknown we substitute an estimatehe sample standard deviation. With the
bootstrap we go one step farther—instead of plugging in an estimate for a single parameter, we
plug in an estimate for the whole populatibn

This raises the question of what to substitute For Possibilities include the nonparamet-
ric, parametric, and smoothed bootstrap. The primary focus of this article is the nonparametric
bootstrap, the most common procedure, which consists of drawing samples from the empirical
distributionF, (with probability 3/n on each observation), i.e. drawing samples with replacement
from the data.

In the parametric bootstrap, we assume a model (e.g. a gamma distribution with unknown shape

ACCEPTED MANUSCRIPT
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and scale), estimate parameters for that model, then draw bootstrap samples from the model with
those estimated parameters.

The smoothed bootstrap is a compromise between parametric and nonparametric approaches;
if we believe the population is continuous, we may sample from a continBowssy a kernel
density estimateSilverman and Youndl987 Hall et al, 1989 Hesterberg2014. Smoothing is

not common; it is rarely needed, and does not generalize well to multivariate and factor data.

2.2 Fundamental Bootstrap Principle

The fundamental bootstrap principle is that this substitution usually works—that we can plug in an
estimate for, then sample, and the resulting bootstrap distribution provides useful information
about the sampling distribution.

The bootstrap distribution is in fact a sampling distribution. The bootstrap aisaspling
distribution (from an estimatg) to estimate things abottie sampling distribution (fronf).

There are some things to watch out for, ways the bootstrap distributifarsdfrom the sam-
pling distribution. We discuss some of these below, but one is important enough to mention imme-

diately.

2.3 Inference, Not Better Estimates

The bootstrap distribution is centered at the observed statistic, not the population paraeigter
atx, notu.

This has two profound implications. First, it means that we do not use the mean of the bootstrap
statistics as a replacement for the original estimafer example, we cannot use the bootstrap to
improve onx; no matter how many bootstrap samples we take, they are centeqatbat. Instead
we use the bootstrap to tell how accurate the original estimate is. In this regard the bootstrap is

like formula methods that use the data twice—once to compute an estimate, and again to compute

1There are exceptions, where the bootstrap is used to obtain better estimates, for example in random forests. These
are typically where a bootstrap-like procedure is used to work around a flaw in the basic procedure. For example,
consider estimating(Y|X = x) where the true relationship is smooth, using only a step function with relatively few
steps. By taking bootstrap samples and applying the step function estimation procedure to each, the step boundaries
vary between samples; by averaging across samples the few large steps are replaced by many smaller ones, giving a
smoother estimate. This gging(bootstrap aggregating).
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a standard error for the estimate. The bootstrap just useesetlit approach to estimating the
standard error.

If the bootstrap distribution is not centered at the observed statistic—if there is bias—we could
subtract the estimated bias to produce a bias-adjusted estimdégs = 20— 6. We generally do
not do this—bias estimates can have high variabilifr¢n and Tibshiranil993. Bias is another
reason not to use the average of boots&at;imatesé_* = 6 + Bias to replace the original estimate
6—thataddsthe bias estimate to the original statistic, doubling any bias.

The second implication is that we do not use the CDF or quantiles of the bootstrap distribution
of §* to estimate the CDF or quantiles of the sampling distribution of an estimatostead, we
bootstrap to estimate things like the standard deviation, the expected valuetpfaind the CDF
and quantiles of — 6 or (6 — 6)/SE.

2.4 Key Idea vs. Implementation Details

What people may think of as the key bootstrap idea—drawing samples with replacement from the
data—is just a pair of implementation details. The first is substituting the empirical distribution
for the population; alternatives include smoothed or parametric distributions. The second is using
random sampling. Here too there are alternatives, including analytical methods (for example,
whend = Xwe may calculate the mean and variance of the bootstrap distribution analytically) and

exhaustive calculations. There arfepossible bootstrap samples from a fixed sample of sjze

(Zn—l

o ) if order doesn’t matter, or even fewer in some cases like binary datasigmall we could

evaluate all of these. We call this arhaustive bootstrapr theoretical bootstrapBut more often
exhaustive methods are infeasible, so we draw say 10000 random samples instead; we call this the

Monte Carlo sampling implementation

2.5 How to Sample

Normally we should draw bootstrap samples the same way the sample was drawn in real life, e.g.
simple random sampling or stratified sampling. Pedagogically, this reinforces the role that random

sampling plays in statistics.
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One exception to that rule is wondition on the observed informatiorror example, when
comparing samples of siazg andn,, we fix those numbers, even if the original sampling pro-
cess could have producedterent counts. (This is the conditionality principle in statistics, the
idea of conditioning on ancillary statistics.) Conditioning also avoids some technical problems,
particularly in regression, see Section

We can also modify the sampling to answérat-if questions. For example, we could bootstrap
with and without stratification and compare the resulting standard errors, to investigate the value
of stratification. We could also draw samples of figtent size; say we are planning a large study
and obtain an initial dataset of size 100, we can draw bootstrap samples of size 2000 to estimate
how large standard errors would be with that sample size. Conversely, this also answers a common
guestion about bootstrapping—why we sample with the same size as the original data—because
by doing so the standard errors reflect the actual data, rather than a hypothetical larger or smaller

data set.

3 \Variation in Bootstrap Distributions

We claimed above that the bootstrap distribution usually provides useful information about the
sampling distribution. We elaborate on that now with a series of visual examples, one where things
generally work well and three with problems. We address two questions:

e How accurate is the theoretical (exhaustive) bootstrap?

e How accurately does the Monte Carlo implementation approximate the theoretical boot-

strap?

Both reflect random variation:

e The original sample is chosen randomly from the population.

e Bootstrap resamples are chosen randomly from the original sample.

3.1 Sample Mean, Large Sample Size

Figure6 shows a population, the sampling distribution for the mean wih50, four samples and

the corresponding bootstrap distributions. Each bootstrap distribution is centered at the statistic

ACCEPTED MANUSCRIPT
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from the corresponding sample rather than at the population ppned@he spreads and shapes of
the bootstrap distributions vary a bit but not a lot.

These observations inform what the bootstrap distributions may be used for. The bootstrap
does not provide a better estimate of the population parameter, because the bootstrap means are
centered ax, notu. Similarly, quantiles of the bootstrap distributions are not useful for estimating
guantiles of the sampling distribution. Instead, the bootstrap distributions are useful for estimating
the spread and shape of the sampling distribution.

The right column shows additional bootstrap distributions for the first sample rwiti000
orr = 10* resamples. Using more resamples reduces random Monte Carlo variation, but does not
fundamentally change the bootstrap distribution—it still has the same approximate center, spread,
and shape.

The Monte Carlo variation is much smaller than the variation duefferént original samples.

For many uses, such as quick-and-dirty estimation of standard errors or approximate confidence
intervals,r = 1000 resamples is adequate. However, there is noticeable variability (including
important but less-noticeable variability in the tails) so when accuracy mattersl0* or more

samples should be used.

3.2 Sample Mean: Small Sample Size

Figure7 is similar to Figure6, but for a smaller sample size,= 9 (and a diferent population).

As before, the bootstrap distributions are centered at the corresponding sample means, but now
the spreads and shapes of the bootstrap distributions vary substantially, because the spreads and
shapes of the samples vary substantially. As a result, bootstrap confidence interval widths vary
substantially (this is also true of standdrdonfidence intervals). As before, the Monte Carlo
variation is small and may be reduced with more resamples.

While not apparent in the pictures, bootstrap distributions tend to be too narrow on average,
by a factor of v/(n— 1)/n for the sample mean, and approximately that for many other statistics.
This goes back to the plug-in principle; the empirical distribution has variafice Varg (X) =
1/nY.(x — X)?, and the theoretical bootstrap standard error is the standard deviation of a nmean of

independent observations from that distributigns= ¢/ v/n. That is smaller than the usual formula
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s/ v/n by a factor ofv/(n — 1)/n. For example, the CLEG, = 3.96 is smaller thars/ v/n = 4.07.

The combination of thimarrowness biaand variability in spread makes some bootstrap con-
fidence intervals under-cover, see SectbnClassicalt intervals compensate using two fudge
factors—a factor ofyn/(n — 1) in computing the sample standard deviatgmand using rather
than normal quantiles. Bootstrap percentile intervals lack these factors, so tend to be too narrow
and under-cover in small samplesintervals with bootstrap SE include thgz factor, but suf-
fer narrowness bias. Some other bootstrap procedures do better. For Stat 101 | suggest warning
students about the issue; for higher courses you may discuss rentéegsrperg2004 2014).

In two-sample or stratified sampling situations, the narrowness bias depends on the individual
sample or strata sizes. This can result in severe bias. For example, the U.K. Department of Work
and Pensions, wanted to bootstrap a survey of welfare cheating. They used a stratified sampling

procedure that resulted in two subjects in each stratum—so an uncorrected bootstrap standard error

would be too small by a factor of/(n, — 1)/n;, = V1/2.

3.3 Sample Median

Now turn to FigureB, where the statistic is the sample median. Here the bootstrap distributions are
poor approximations of the sampling distribution. The sampling distribution is continuous, but the
bootstrap distributions are discrete—for aglthe bootstrap sample median is always one of the
original observations—and with wildly varying shapes.

The ordinary bootstrap tends not to work well for statistics such as the median or other quantiles
in small samples, that depend heavily on a small number of observations out of a larger sample.
The bootstrap depends on the sample accurately reflecting what matters about the population, and
those few observations cannot do that. The right column shovwstbethed bootstrajit is better,
though is still poor for this smak.

In spite of the inaccurate shape and spread of the bootstrap distributions, the bootstrap per-
centile interval for the median is not balf(on, 1982. For oddn, percentile interval endpoints
fall on one of the observed values. Exact interval endpoints also fall on one of the observed values
(order statistics), and for a 95% interval those are typically the same or adjacent order statistics as

the percentile interval.
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3.4 Mean-Variance Relationship

In many applications, the spread or shape of the sampling distribution depends on the parameter
of interest. For example, the binomial distribution spread and shape depgndonilarly, for an
exponential distribution, the standard deviation of the sampling distributiarisoproportional to

M.

This mean-variance relationship is reflected in bootstrap distributions. Fgmaws samples
and bootstrap distributions for an exponential population. There is a strong dependence between
x and the corresponding bootstrap SE. This relationship has important implications for confidence
intervals; procedures that ignore the relationship are inaccurate. We discuss this more in Sec-
tion 4.5.

There are other applications where sampling distributions depend strongly on the parameter; for
example sampling distributions for chi-squared statistics depend on the non-centrality parameter.
Use caution when bootstrapping such applications; the bootstrap distribution may beffexgndli
from the sampling distribution.

Here there is a bright spot. The right column of Fig@rehows the sampling distribution
and bootstrap distributions of thestatistic, equationsl{2). These distributions are much less
sensitive to the original sample. We use these bootsirggiributions below to construct accurate

confidence intervals.

3.5 Summary of Visual Lessons

The bootstrap distribution reflects the original sample. If the sample is narrower than the popu-
lation, the bootstrap distribution is narrower than the sampling distribution. Typically for large
samples the data represent the population well; for small samples they maBaouistrapping
does not overcome the weakness of small samples as a basis for infdreheed, for the very
smallest samples, it may be better to make additional assumptions such as a parametric family.
Looking ahead, two things matter for accurate inferences:
e how close the bootstrap distribution is to the sampling distribution (the bootstrap an

advantage, see Figug;
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¢ how well the procedures allow for variation in samples, e.g. by using fudge factors.
Another visual lesson is that random sampling using only 1000 resamples causes more random

variation in the bootstrap distributions. Let’s consider this issue more carefully.

3.6 How Many Bootstrap Samples

| suggested above using 1000 bootstrap samples for rough approximatiortsppnidie for better
accuracy. This is about Monte Carlo accuracy—how well the usual Monte Carlo implementation
of the bootstrap approximates the theoretical bootstrap distribution. A bootstrap distribution based
onr random samples corresponds to drawirapservations with replacement from the theoretical
bootstrap distribution.

Brad Efron, inventor of the bootstrap, suggested in 1993rtka?00, or even as few as= 25,
sufices for estimating standard errors and that1000 is enough for confidence intervali§ron
and Tibshirani,1993.

| argue that more resamples are appropriate. First, computers are faster now. Second, those
criteria were developed using arguments that combine variation due to the original random sample
with the extra variation from the Monte Carlo implementation. | prefer to treat the data as given
and look just at the variability due to the implementation. Two people analyzing the same data

should not get substantiallyfierent answers due to Monte Carlo variation.

Quantify accuracy by formulas or bootstrapping: We can quantify the Monte Carlo variation
in two ways—using formulas, or by bootstrapping. For exampleGlbe the cdf of a theoretical
bootstrap distribution an@ the Monte Carlo approximation, then the varianc&¢f) is G(x)(1 —
G(X))/r, which we estimate using(x)(1 — G(x))/r.

Similarly, a bootstrap bias estimate is a mean cindom values minusnstant? - 9; the
Monte Carlo standard error for the biassig v wheres, is the sample standard deviation of the
bootstrap distribution.

We can also bootstrap the bootstrap distribution! Theotstrap statistics are an i.i.d. sample
from the exhaustive bootstrap distribution; we can bootstrap that sample. For example, the 95%
percentile confidence interval for the CLEC data is(8025.41); these are 2.5% and 97.5% quan-
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tiles of the bootstrap distributiom; = 10*. To estimate the accuracy of those quantiles, we draw
resamples of size from the bootstrap distribution and compute the quantiles for each resample.

The resulting SEs for the quantile estimates a@®6 and 0141.

Needr > 15000to be within 10%: Next we determine how large should be for accurate
results, beginning with two-sided tests with size 5%. Suppose the true onePsigede is 0.025,
and we want the estimatétvalue to be within 10% of that, between 0.0225 and 0.0275. To have a
95% probability of being that close requires tha@6ly/0.025- 0.975/r < 0.025/10, orr > 14982.

Similar results hold for a bootstrap percentile or bootstrapnfidence interval. Ifj is the true

2.5% quantile of the theoretical bootstrap distribution foor t*, respectively), for the estimated
G(q) to fall between 2.25% and 2.75% with 95% probability requires14982.

For at interval with bootstrap SH, should be large enough that variationgnhas a similar
small gfect on coverage. For largeand an approximately normal bootstrap distribution, about
r > 5000 stifices Hesterberg2014).

Rounding up, we need> 15000 to have 95% probability of being within 10%, for permutation
tests and percentile and bootsttagpnfidence intervals, and> 5000 for thet with bootstrap SE.
While students may not need this level of accuracy, it is good to get in the habit of doing accurate
simulations. Hence | recommend“for routine use. In practice, if the results with= 10* are
borderline, then we can increaséo reduce the Monte Carlo error. We want decisions to depend
on the data, not random variation in the Monte Carlo implementation. Werusé&gQ, 000 in the
Verizon project.

Students can do multiple runs withfiirentr, to see how the results vary. They should de-
velop some intuition into how results vary withfidirentr; this intuition is valuable not only for

resampling, but for general understanding of how estimates varyfferentn.

4 Confidence Intervals

In this section | describe a number of confidence intervals, and compare their pedagogical value

and accuracy.
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A hypothesis test or confidence intervafirst-order accuratef the one-sided actual rejection
probabilities or one-sided non-coverage probabilitigiedifrom the nominal values b@(n~%/2).

It is second-order accuratié the differences ar®(n™?).

4.1 Statistics 101—Percentile, antlwith Bootstrap SE

For Stat 101 | would stick with the two quick-and-dirty intervals mentioned earlier: the bootstrap
percentile interval, and theinterval with bootstrap standard erer: t./2%. If using software

that provides it, you may also use the bootstragerval described below. The percentile interval
will be more intuitive for students. Thewith bootstrap standard error helps them learn formula
methods. Students can compute both and compare.

Neither interval is very accurate. They are only first-order accurate, and are poor in small
samples—they tend to be too narrow. The bootstrap standard error is too small, by a factor
v/(n=1)/n so thet interval with bootstrap SE is too narrow by that factor; this is the narrowness
bias discussed in Secti@2

The percentile interval sters the same narrowness and more—for symmetric data it is like
usingz,20-/ yYnin place oft, 2,15/ ¥n. Random variability in how skewed the data are also adds
variability to the endpoints, further reducing coverage. Théeets areD(n™?) (effect on coverage
probability) or smaller, so they become negligible fairly quicklyraisicreases. But they matter
for smalln, see Figurel0. The interval also ha®(n~'/?) errors—because it only makes a partial
skewness correction, see Sectibh

In practice, the with bootstrap standard erroffers no advantage over a standapiocedure
for the sample mean. Its advantages are pedagogical, and that it can be used for statistics that lack
easy standard error formulas.

The percentile interval is not a good alternative to standantervals for the mean of small
samples—while it handles skewed populations better, it is less accurate for small samples because
it is too narrow. For exponential populations the percentile interval is less accurate than the stan-
dardt interval forn < 34.

In Stat 101 it may be best to avoid the small-sample problems by using examples with larger

n. Alternately, some software corrects for the small-sample problems; for example, the resample

ACCEPTED MANUSCRIPT
17



Downloaded by [Imperial College London Library] at 18:56 12 September 2015

445

450

455

460

ACCEPTED MANUSCRIPT

package desterberg2015 includes theexpanded percentile interv@Hesterberg1999 2014 a

percentile interval with fudge factors motivated by standandervals.

4.2 Reverse Bootstrap Percentile Interval

Thereverse bootstrap percentile interv@alled “basic bootstrap confidence interval” Davison
and Hinkley,1997) is a common interval, with pedagogical value in teaching manipulations like
those shown just below. But it is poor in practice; | include it here to help faculty and students
understand why and to discourage its use.

It is based on the distribution & = § — 6 We estimate the CDF af using the bootstrap
distribution of6* = §* — 6. Letq, be thea quantile of the bootstrap distribution 6f, i.e.a =
P(6* < q,). Then

a/2 P(@* —-0< Oo/2)

P — 6 < Quj2) = P(6 — 02 < 6)

X

Similarly for the other tail. The resulting confidence interval is

(é = Q1-a/25 6 — Qo/2) = (Zé — Q102 20 — Q./2) (3)

whereQ, is the quantile of the bootstrap distribution&f

This interval is the mirror image of the bootstrap percentile interval; it reaches as far @bove
as the bootstrap percentile interval reaches below. For example, for the CLEC mean, the sample
mean is 165, the percentile interval is (10 25.4) = 16.5 + (-6.4, 8.9), and the reverse percentile
interval is 165 + (-8.9,6.4) = 2- 165 - (254,10.1) = (7.6,229).

Reversing works well for a pure translation family, but those are rare in practice. More common
are cases like Figur8, where the spread of the bootstrap distribution depends on the statistic.
Then a good interval needs to be asymmetric in the same direction as the data, see4Sgction
The reverse percentile interval is asymmetrical in the wrong direction! Its coverage accuracy in
FigurelOis terrible. It also sffers from the same small-sample narrowness issues as the percentile
interval.

Hall (1992 calls the bootstrap percentile interval “the wrong pivot, backwards”; the reverse
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percentile interval uses that same wrong pivot in revets®the wrong pivot because it isn’t even
close topivotal—a pivotal statistic is one whose distribution is independent of the parameter. A

t statistic is closer to pivotal; this leads us to the next interval.

4.3 Bootstrapt Interval

We saw in Sectiorl.4 that thet statistic does not have tadistribution when the population is
skewed. The bootstrapconfidence interval is based on thstatistic, but estimates quantiles of
the actual distribution using the data rather than a taBlfon and Tibshiran{1993 call this
“Confidence intervals based on bootstrap tables”—using the bootstrap to generate the right table
for an individual dataset, rather than using a table from a book. This has the best coverage accuracy
of all intervals in FigurelO.

We assume that the distribution Bfis approximately the same as the distributiort ¢dqua-
tions 1 and2); the right column of Figur® suggests that this assumption holds, i.e. the statistic is
close to pivotal. Lety, be thea quantile of the bootstrapdistribution, then

o -6
P( < qg/Z)

2 -
a/ SE

6-0 A
P(— < qa/z) = P(Q — qa/28E< 9)

2

SE

Similarly for the other tail. The resulting confidence interval is

(6 — O1_¢/2SE 6 — 0, 2SE). 4)

Note that endpoints are reversed: we subtract an upper quantile of the bobdsstapution to get
the lower endpoint of the interval, and the converse (this reversal is easy to overlook with standard

t intervals due to symmetry).

4.4 Confidence Interval Accuracy

Next we compare the accuracy of thédient confidence intervals:

t =t ordinaryt interval;

B = tBoot: t interval with bootstrap standard error;
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p = perc: bootstrap percentile interval,
I = reverse: reverse percentile interval;

T = bootT: bootstrag.

For a 95% interval, a perfectly accurate interval misses the parameter 2.5% of the time on each
side. FigurelO shows actual non-coverage probabilities for normal and exponential populations,

respectively. The figure is based on extremely accurate simulations, see the appendix.

Normal population: The percentile interval (“p” on the plot) does poorly. It corresponds to

usingzinstead oft, using a divisor oh instead ofn — 1 when calculating SE, and doing a partial

correction for skewness; since the sample skewness is random this adds variability. For normal

data the skewness correction doesn’t help, and the other three things kill it for small samples. The

reverse percentile interval is similarly poor, with exactly the same coverage for normal populations.
Thet interval with bootstrap SE (“B”) does somewhat better, though still under-covers. The

t interval (“t") and bootstrap (“T”) interval do very well. That is not surprising for thtanterval,

which is optimized for this population, but the bootsttajmes extremely well, even for very small

samples.

Exponential population: This is a harder problem. All intervals badly under-cover on the
right—the intervals are too short on the right side—and over-cover (by smaller amounts) on the
left. (Over-covering on one side does not compensate for under-covering on the other—instead,
having both endpoints too low gives an even more biased picture about where the parameter may
be than having just one endpoint too low.)

The bootstrapt interval (“T”) does best, by a substantial margin. It is second-order accurate,
and gives coverage within 10% for> 101. The other intervals are all poor. The reverse percentile
interval (“r") is the worst. The percentile interval (“p”) is poor for small samples, but better than
the ordinaryt (“t”) for n > 35. To reach 10% accuracy requires> 2383 for percentile, 4815
for ordinaryt, 5063 fort with bootstrap standard errors and over 8000 for the reverse percentile

method.
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4.5 Skewness and Mean-Variance Relationship

Take another look at Figur@, for the sample mean from a skewed population. Note how the
spread of the bootstrap distribution fordepends on the statistic To obtain accurate confidence
intervals we need to allow for such a relationship (and Mathematical Statistics students should be
aware of this).

For positively-skewed populations, when< u the sample standard deviation and bootstrap
SE also tend to be small, so a confidence interval needs to reach many (small) SE’s to the right
to avoid missing: too often. Conversely, whex > u, sands, tend to be large, so a confidence
interval doesn’t need to reach many (large) SE’s to the left to reach

In fact, a good interval, like the bootstramterval, is even more asymmetrical than a bootstrap
percentile interval—about three times as asymmetrical in the case of a 95% intervals for a mean
(Hesterberg2014). The bootstrap explicitly estimates how many standard errors to go in each
direction. This table shows how far the endpoints for thpercentile, reverse percentile, and

bootstrag intervals are above and below the sample mean of the Verizon ILEC data:

t reverse percentilebootstrapT

25% -0.701 -0.718 -0.683 -0.646
97.5% 0701 (0683 Q718 Q762
-ratio 1 Q951 1050 1180

The bootstrap percentile interval is asymmetrical in the right direction, but falls short; the reverse
percentile interval goes the wrong way.

For right-skewed data, you may be surprised that good confidence intervals are 3x as asymmet-
rical as the bootstrap percentile interval; You may even be inclined to “downweight the outliers”,
and use an interval that reaches farther left; the reverse percentile interval does so, with catas-
trophic dfect. Instead, think of it this way: the data show that the population is skewed, take that
as given; we may have observed tieav observationsrom the long right tail, so the confidence

interval needs to reach far to the right to protect against that—many (small) SE’s to the right.
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4.6 Confidence Interval Details

There are dferent ways to compute quantiles common in statistical practice. For intervals based
on quantiles of the bootstrap distribution, | recommend lettindgthéargest value in the bootstrap
distribution be theK + 1)/r quantile, and interpolating for other quantiles. InR Core Team

2014 this isquantile(x, type=6). Other definitions give narrower intervals, and exacerbate
the problem of intervals being too short.

Bootstrapt intervals require standard errors—for the original sample, and each bootstrap sam-
ple. When formula SE’s are not available, we can use the bootstrap to obtain thesef8#ia0d
Tibshirani, 1993, using aniterated bootstrapin which a set of second-level bootstrap samples
is drawn from each top-level bootstrap sample to estimate the SE for that bootstrap sample. This
requiresr + rr, resamples if, second level samples are drawn from each top-level sample. The
computational cost has been an impediment, but should be less so in the future as computers make
use of multiple processors.

While the simulation results here are for the sample mean, the boadtstrsgcond-order accu-
rate and the others are first-order accurate under quite general conditiotsysr@(d Tibshirani
1993 Davison and Hinkley1997. Efron and Tibshiran{1993 note that the bootstraps partic-
ularly suited to location statistics like the sample mean, median, trimmed mean, or percentiles, but
performs poorly for a correlation ciient; they obtain a modified version by using a bootstrap
for a transformed version of the statisfic= h(6), whereh is avariance-stabilizing transformation
(so that Varf) does not depend ap) estimated using a creative use of the bootstrap. The same

method improves the reverse percentile interiza\vison and Hinkley1997).

4.7 Bootstrap Hypothesis Testing

There are two broad approaches to bootstrap hypothesis testing. One approach is to invert a confi-
dence interval—rejedtl, if the corresponding interval excludés

Another approach is to sample in a way that is consistent Mgtlthen calculate &-value as
a tail probability. For example, we could perform a two-sample bootstrap test by pooling the data

and drawing bootstrap samples of sigeandn, with replacement from the pooled data. However,

ACCEPTED MANUSCRIPT
22



Downloaded by [Imperial College London Library] at 18:56 12 September 2015

560

565

570

575

580

ACCEPTED MANUSCRIPT

this bootstrap test is not as accurate as the permutation test. Suppose, for example, that the data
contain three outliers. The permutation test tells how common the observed statistic is, given the
three outliers. With a pooled bootstrap the number of outliers would vary. The permutation test
conditions on the data, treating only group assignment as random.

Another example, for a one-sample mean, is to translate the data, subtsagtigiijom eachx;
so the translated meangs, then resample from the translated data. This is equivalent to inverting
a reverse percentile confidence interval, with corresponding inaccuracy for skewed data. It can
also yield impossible data, like negative values for data that must be positive.

Translation modifies a distribution by modifying the values. A better way to modify a distribu-
tion is to keep the same values, but change the probabilities on those values, using bootstrap tilting
(Efron, 1981, Davison and Hinkley1997); empirical likelihood Qwen 2007) is related. Tilting
preserves mean-variance relationships. | believe tilting has great pedagogical potential for Math-
ematical Statistics; it nicely connects parametric and nonparametric statistics, can help students
understand the relationship between parameters and sampling distributions, and better understand
confidence intervals. See the online supplement for an example. But suitable software for educa-
tional use is not currently available.

Neither approach is as accurate as permutation tests, in situations where permutation tests can
be used. The actual one-sided rejection probabilities when inverting confidence intervals corre-

spond to Figurd 0. In contrast, permutation tests are nearly exact.

5 Regression

There are two ways that bootstrapping in regression is particularly useful pedagogically. The first
is to help students understand the variability of regression predictions by a graphical bootstrap.
For example, in Figurd&1 we bootstrap regression lines; those lines help students understand the
variability of slope and intercept ciients, and of predictions at each valuexofThe more we
extrapolate in either direction, the more variable the predictions become. A bootstrap percentile
confidence interval foE(Y]|X) is the range of the middle 95% of tyevalues for regression lines at

any x; these intervals are wider for more extreme
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The second is to help students understand tferénce between confidence and prediction
intervals. In the left panel we see that the variability of individual observations is much larger
than the variability of the regression lines; confidence intervals based on the lines would capture
only a small fraction of observations. To capture observations, prediction intervals must be much
wider, and should approximate the quantiles of the residual distribution, because they are primarily
intervals for individual observations—no CLT applies for prediction intervals.

The bootstrap estimates the performance of the model that was actually fit to the data, regard-
less of whether that is a poor model. In the right panel of Fidurea linear approximation was
used even though the relationship is quadratic; the bootstrap measures the variability of the linear
approximation, and estimates the bias of (a linear approximation to the data) as an estimate of (a
linear approximation to the population). The bootstrap finds no bias—fox,ahg bootstrap lines

are centered vertically around the original fit.

5.1 Resample Observations or Conditional Distributions

Two common procedures when bootstrapping regression are:

e bootstrap observations, and

e bootstrap residuals.
The latter is a special case of a more general rule:

e resampley from its estimated conditional distribution given

In bootstrapping observations, we sample with replacement from the observations, keeping
y and corresponding’s together. In any bootstrap sample some observations may be repeated
multiple times, and others not included.

In bootstrapping residuals, we fit a regression model, compute predicted yadmelsrésiduals
e =Y — Vi, then create a bootstrap sample using the samweues as in the original data, but
with y obtained by adding the predictions and random residyals §; + €, wheree" are sampled
randomly with replacement from the original residuals.

Bootstrapping residuals corresponds to a designed experiment whede déine fixed and only
y is random, and bootstrapping observations to randomly sampled data whene dadly are

sampled from a joint distribution. By the principle of sampling the way the data were drawn, we
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would bootstrap observations if tix&s were random. Alternately, we can follow the precedent set

by the common formula approach, where formulas are derived assumin( te fixed, and in
practice we use these even when #geare random. In doing so we condition on the observed

X’s, and hence on the observed information (in regression the information depends on the spread
of the Xs—the wider the spread, the le8waries). Similarly, in bootstrapping, we may resample

the residuals, conditioning on the observesd

Fixing the X's can make a big dlierence in practice; bootstrapping observations can be dan-
gerous. For example, suppose one of ¥&eis a factor variable with a rare level, say only 5
observations. When resampling observations, about 67 out of 10000 samples omit those five ob-
servations entirely; then the regression software cannot estimatéizien for that level. Worse,
many samples will include just one or two observations from that level; then the software produces
estimates with high variance, with no error message to flag the problem. Similar problems occur in
models with interactions, or with continuous variables when some linear combirjatpx has
most of its variation in a small number of observations. We avoid these problems by bootstrapping
residuals.

Bootstrapping residuals is a special case of a more general rule, to sérfnpie its estimated
conditional distribution giverX. For example, when bootstrapping logistic regression, we fit the
model, and calculate predicted valugs=" E(Y|X = x) = P(Y = 1X = x). To generate a
bootstrap sample, we keep the sars and lety; = 1 with probabilityy;, otherwisey; = O.

This is an example of a parametric bootstrap. We use this at Google in a complicated multi-stage
logistic regression procedure.

The conditional distribution idea also helps in linear regression where there is heteroskedas-
ticity or lack of fit; we sample residuals from observations with similar residual distributions, e.g.

from observations with similar predictions (for heteroskedasticityyo(for lack of fit).

6 Discussion

We first summarize some points from above, then discuss books and software.

Bootstrapping fiers a number of pedagogical benefits. The process of bootstrapping mimics
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the central role that sampling plays in statistics. Students can use familiar tools like histograms to
visualize sampling distributions and standard errors. They may understand that a SE is the standard
deviation of a sampling distribution. Students can work directly with estimates of interest, like
sample means, insteadtddtatistics, and use the same basic procedure for mdligyeht statistics
without new formulas. Robust statistics like medians and trimmed means can be used throughout
the course. Students can focus on the ideas, not formulas. When learning formulas, they can
compare formula and bootstrap answers. Graphical bootstrapping for regression demonstrates the
variation in regression predictions, and th&elience between confidence and prediction intervals.

Understanding the key idea behind the bootstrap—sampling from an estimate of the population—
is important in order to use the bootstrap appropriately, and helps to understand when it may not
work well, or which methods may work better. When using Monte Carlo sampling, enough sam-
ples should be used to obtain accurate answers—210,000 is good for routine use. Students can gain
insight into sampling variation by trying fierent numbers.

Bootstrap distributions and percentile confidence intervals tend to be too narrow, particularly
for small samples. As a result, percentile intervals are less accurate than canmtesmals for
small samples, though more accurate for larger samples. Most accurate are baaotsenaals.

The reason relates to the fundamental idea of the bootstrap—to replace the population by an esti-
mate of the population, then use the resulting bootstrap distribution as an estimate of the sampling
distribution. This substitution is more accurate for a pivotal statistic—antigtagistic is close to
pivotal.

For skewed data, confidence intervals should reach longer in the direction of the skewness;
the bootstrap does this well, the percentile makes abo( bf that correctiont intervals ignore
skewness, and reverse percentile intervals go the wrong way.

We generally sample the way the data were produced (e.g. simple random or stratified sam-
pling), except to condition on observed information. For regression, that means to fixahees,

i.e. to resample residuals rather than observations. This avoids problems in practice.

To reach the full potential of bootstrapping in practice and education, we need better software

and instructional materials. Software suchhasps://www.stat.auckland.ac.nz/~wild/

VIT or http://lock5stat.com/statkey has a place in education, to help students visualize
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the sampling process, but is not suitable when students go into real jol&s(RrCore Team
2014), students can write bootstrap loops from scratch, but thisfiicdli for Stat 101 students.
For that matter it may be flicult for higher level students, but it is worth putting in thdifoet.
Modern statistics requires extensive computing skills including resampling and simukagaénq (
2014, and developing those skills should start early. The Mosaic paclkaged et al, 2015 can
make this easier, and the package contains one vignette for resampling and another with resources
including supplements using Mosaic farock et al, 2013 Tintle et al, 2014). In practice, imple-
menting some of the more accurate bootstrap methodstisuli (especially those not described
here), and people should use a package rather than attempt this themselves. Fbo&; feck-
age Canty and Ripley2014) is powerful but dificult to use. Theresample packagelflesterberg
2019 is easier but limited in scope. Thwot andresample packages are designed for prac-
tice, not for pedagogy, they hide details and do not provide dynamic simulations demonstrating
resamplingboot offers tilting. resample offers theexpanded percentile intervakith improved
small-sample coverage.

Books need improvement. Too few textbooks use the bootstrap, and those that do could stand
improvementChihara and Hesterbe(@011) andLock et al.(2013 use permutatiginandomization
tests and bootstrapping to introduce inference, and later to introduce formula methods. The treat-
ments are largely pedagogically appropriate and valuable. However, neither recognizes that boot-
strap percentile intervals are too narrow for small samples and inappropriately recommend that
method for small samplesl.ock et al. (2013 also recommend testing a single mean using the
translation technique discussed in Sectori while that is useful pedagogically to demonstrate
some manipulations, it should be replaced with better alternatives like the bodtsiDegz et al.
(2014 use the bootstrap for only one applicationt iaterval with bootstrap SE for confidence
intervals for a standard deviation. Otherwise they avoid the bootstrap, due to poor small-sample
coverage of percentile intervals.

These imperfections shouldn’t stop teachers from using the bootstrap now. The techniques can
help students understand statistical concepts related to sampling variability.

| hope that this article spurs progress—that teachers better understand what the bootstrap can

do and use it to help students understand statistical concepts, that people makefentine e
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use of bootstrap techniques appropriate to the application (not the percentile interval for small
samples!), that textbook authors recommend better techniques, and that better software for practice

and pedagogy results.

Simulation Details

Figure 10 is based on 10samples (except 510° for n > 6000), withr = 10* resamples for
bootstrap intervals, using a variance reduction technique based on conditioning. For normal data,
X andV = (X; — X,..., X, — X) are independent, and each interval is translation-invariant (the
intervals forV andV + x differ by x). Let U be the upper endpoint of an interval, aRAfU < u) =
Ev(E(U < V). The inner expected value is a normal probabillg) < V) = P(X + U(V) <
ulV) = P()Z < u—U(V)|V). This technique reduces the variance by factors ranging frénifér
n = 5) to over 500 (fom = 160).

Similarly, for the exponential distributior andV = (X;/X, ..., X./X) are independent, and
we use the same conditioning technique. This reduces the Monte Carlo variance by factors ranging
from 8.9 (for n = 5) to over 5000 (fon = 8000). The resulting accuracy is as good as using 89000
or more samples without conditioning. For example, standard errors for one-sided coverage for
n = 8000 are MO0030 or smaller.

Acknowledgments: | thank David Diez, Jo Hardin, Beth Chance, Fabian Gallusser, Laura Chi-

hara, Nicholas Horton, Hal Varian, Brad Efron, five referees and two editors for helpful comments.
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Figure 1: Normal quantile plot of ILEC and CLEC repair times.
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Figure 2: Bootstrap distributions for Verizon dat8ootstrap distributions fox, for the ILEC and
CLEC datasets.
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Figure 3: CLT with n=1664. Left: scatterplot of bootstrap means and standard errors, ILEC data.
Right: bootstrag distribution.
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Figure 4: Ideal world. Sampling distributions are obtained by drawing repeated samples from the
population, computing the statistic of interest for each, and collecting (an infinite number of) those
statistics as the sampling distribution.
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Figure 5: Bootstrap world. The bootstrap distribution is obtained by drawing repeated samples
from an estimate of the population, computing the statistic of interest for each, and collecting those
statistics. The distribution is centered at the observed statigtingt the parametep].
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Figure 6: Bootstrap distribution for the mean,-a50. The left column shows the population and
four samples. The middle column shows the sampling distributioxXfand bootstrap distribu-
tions of X* for each sample, with = 10*. The right column shows more bootstrap distributions
for the first sample, three with= 1000 and two withr = 10%.
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Figure 7: Bootstrap distributions for the mean,=9. The left column shows the population and
four samples. The middle column shows the sampling distributioXXfand bootstrap distribu-
tions of X* for each sample, with = 10*. The right column shows more bootstrap distributions
for the first sample, three with= 1000 and two withr = 10%.
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Figure 8: Bootstrap distributions for the median,=n15. The left column shows the population

and four samples. The middle column shows the sampling distribution, and bootstrap distributions
for each sample, with = 10*. The right column shows smoothed bootstrap distributions, with
kernel sds/ y/nandr = 10%.

ACCEPTED MANUSCRIPT
38



Downloaded by [Imperial College London Library] at 18:56 12 September 2015

ACCEPTED MANUSCRIPT

_ Sampling Sampling
Population Distribution Distribution
/\ forx fort
T T T T 1
" u -4 -2 0 2 4
Bootstrap "
Sample 1 distribution Booistrap Quantiles
for sample 1 distribution .
for sample 1:
- . -
1T
0 X H 6 0 X -4 -2 0 2 4
Bootstrap "
Sample 2 distribution Booistrap Quantiles
for sample 2 distribution .
for sample 2
0 XH 6 0 X -4 -2 0 2 4
Bootstrap "
Sample 3 distribution Booistrap Quantiles
for sample 3 distribution .
for sample 3
0 ® 6 -4 -2 0 2 4
Bootstrap "
Sample 4 distribution Booistrap Quantiles
for sample 4 distribution .
J/-[\ for sample 4:
r T 1T T T T T T 1
0 [ 6 0 % -4 -2 0 2 4
Bootstrap "
Sample 5 distribution Booistrap Quantiles
for sample 5 distribution .
I I for sample 5 :
'—_A
0 H X 6 0 X -4 -2 0 2 4

Figure 9: Bootstrap distributions for the mean,=n50, exponential populationThe left column

shows the population and five samples. (These samples are selected from a larger set of random
samples, to have means spread across the range of sample means, and average standard deviations
conditional on the means.) The middle column shows the sampling distribution and bootstrap
distributions for each sample. The right column shows bootstdagiributions.
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Figure 10: Confidence interval one-sided miss probabilities for normal and exponential popula-
tions. 95% confidence interval, the ideal non-coverage is 2.5% on each side. The intervals are
described at the beginning of Sectidl. For the normal population non-coverage probabilities

are the same on both sides, and the reverse percentile interval is omitted (it has the same coverage
as the percentile interval). For the exponential population, curves with letters are non-coverage
probabilities on the right, where the interval is beléwand curves without letters correspond to

the left side.
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Figure 11: Bootstrapping linear regressiorlLeft. Linear regression linear model fits. At ary

they values from the bootstrap lines form a bootstrap distribution, that may be used for standard
errors or confidence intervals. Prediction intervals are wider, to capture individual observations.
Right: Fitting a linear relationship to data that are not linear; the bootstrap does not diagnose the
poor fit.
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